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Abstract: Long-term monthly coastal wetland vegetation monitoring is the key to quantifying the
effects of natural and anthropogenic events, such as severe storms, as well as assessing restoration
efforts. Remote sensing data products such as Normalized Difference Vegetation Index (NDVI),
alongside emerging data analysis techniques, have enabled broader investigations into their dynam-
ics at monthly to decadal time scales. However, NDVI data suffer from cloud contamination making
periods within the time series sparse and often unusable during meteorologically active seasons. This
paper proposes a virtual constellation for NDVI consisting of the red and near-infrared bands of Land-
sat 8 Operational Land Imager, Sentinel-2A Multi-Spectral Instrument, and Advanced Spaceborne
Thermal Emission and Reflection Radiometer. The virtual constellation uses time-space-spectrum
relationships from 2014 to 2018 and a random forest to produce synthetic NDVI imagery rectified
to Landsat 8 format. Over the sample coverage area near Apalachicola, Florida, USA, the synthetic
NDVI showed good visual coherence with observed Landsat 8 NDVI. Comparisons between the
synthetic and observed NDVI showed Root Mean Squared Error and Coefficient of Determination
(R2) values of 0.0020 sr−1 and 0.88, respectively. The results suggest that the virtual constellation was
able to mitigate NDVI data loss due to clouds and may have the potential to do the same for other
data. The ability to participate in a virtual constellation for a useful end product such as NDVI adds
value to existing satellite missions and provides economic justification for future projects.

Keywords: coastal wetlands; NDVI; virtual constellation; remote sensing; random forest

1. Introduction

High quality satellite imagery available to the public at no cost is a key driver for
innovation in the applied earth observation space. In particular, it significantly advances
simulated constellations of medium resolution sensor data for monthly monitoring of
earth’s coastal and terrestrial systems [1,2]. Coastal wetlands (CW) have been recognized
for their ability to enhance water quality, recharge aquifers, stabilize shorelines, provide
nurseries for fisheries, and offer a setting for numerous recreational activities [3]. Unfortu-
nately, CW are deteriorating due to climate change, human activity, and accelerating rates
of sea level rise [4–6]. Considering the extensive protective and non-protective ecosystem
services they provide, it is important to monitor and, if necessary, protect and restore these
valuable resources.

Satellite remote sensing has many inherent capabilities that make it a strong contrib-
utor to investigating and monitoring CW. However, even with high resolution, a single
sensor can have limitations in terms of spatio-temporal coverage in a selected scene or series
of scenes that hinders continuous long-term CW monitoring. Therefore, multi-sensor fusion
plays an important role in aggregating complementary data from multiple sensors [7]. This
is especially useful for CW areas where fully intact coverage is difficult for a single sensor
due to frequent thick cloud cover [8]. In this regard, a potential problem lies in the synergis-
tic use of multiple satellite systems. Fusion of satellite data from multiple sources involves
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an inherent disruption of harmonizing information due to differences in ground resolution,
spectral ranges, and spectral properties, such as band number, position, and width [9].
Therefore, using satellite sensors of similar spatial and spectral properties, especially for
monthly CW analyses, is vital for the coherent fusion of multi-sensor satellite data.

Landsat is generally recognized to have the longest publicly available data record
beginning in 1972. Landsat 5 has been producing imagery since 1984 and has been used
extensively for local and global monitoring. Landsat 8 (L8), launched in 2013, is the latest
generation space vehicle in the Landsat Data Continuity mission. The Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS) are both currently in operation aboard
L8 with an orbital revisit time of 16 days [1]. The historical record of Landsat imagery is
hindered by the cloud and shadow obscurity that affects all passive optical satellite sensors.
Periods of obscured imagery in the time series record of L8 requires complementary data to
make it suitable for monthly CW monitoring in applications such as long-term salt marsh
change and mapping [10,11], forest degradation [9], rapid phenology changes [11], and
CW degradation [12,13].

Normalized Difference Vegetation Index (NDVI) is calculated from multispectral
optical remote sensors and characterizes the reflective and absorptive characteristics of
the ground surface in the red and near infrared (NIR) bands. A consistent investigation
of NDVI over time at local to regional scales can indicate phenological and event-driven
changes in coastal marsh vegetation [11,13,14]. Current optical sensors have enough spatial
and temporal resolution for NDVI production, but images may be obscured by clouds
thereby masking critical areas of change over time. These obscured pixels are one of the
principal barriers to effective satellite image interpretation from optical sensors. However,
panchromatic and multispectral sensors such as Landsat, Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER), and Sentinel are the only freely available
(to the public) sources of reflectance data [15] with others being commercial and not
publicly available except at significant cost. Hyperspectral sensors on satellites such as
MERIS/ENVISAT-1 could provide additional useful information about the composition
of coastal vegetation however their relatively coarse resolution is not suitable for a local
ecosystem change identification and the narrow swath width results in low availability of
data for coastal areas, both of which prevent their efficient and widespread utilization for
many coastal applications.

Previous research has reported many successful applications of sensor fusion among
Landsat, Moderate Resolution Imaging Spectroradiometer, (MODIS), and Sentinel [16,17].
Additionally, satellite sensors including Landsat, Advanced Very High Resolution Ra-
diometer (AVHRR), ASTER, Sentinel, and MODIS have been used for NDVI mapping at
local or global scales [18,19]. Despite the availability of NDVI data from multiple sources,
an inherent inconsistency hinders the synergistic use of multi-source NDVI. Previous
researchers such as Fan and Liu [20] have also presented comprehensive literature reviews
on spectral consistency issues in NDVI data. Since NDVI is computed using reflectance
values in the red and NIR bands, any spectral band inconsistencies directly impact the
NDVI calculations. For example, satellite observations are post-processed to rectify various
spatial [21], temporal [22], radiometric [23], and spectral factors [24]. Much of this work
is focused on facilitating sensor fusion at the surface reflectance level, rather than at the
indexed data product level (NDVI for example). Specifically, recent work by Padró et al.
fused L8 OLI with Sentinel-2A MultiSpectral Instrument (MSI) surface reflectances to
radiometrically correct blue, green, red, NIR, short-wave infrared (SWIR) 1, and SWIR 2
bands [25]. Claverie et al. also harmonized L8 OLI and S2A MSI into a virtual constellation
to produce a surface reflectance dataset [26]. While it is crucial to investigate spectral
differences, extending the analysis to derived products such as NDVI is important for
assessing the applicability of sensor fusion to meet the long term monitoring needs of the
scientific community [7,27].

Differences in spatial resolution can add bias to fused NDVI data since it is scale
dependent [28]. To reduce overall uncertainty, multiple NDVI intercalibration studies
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agree that data from the subject and reference sensors must be spatially co-registered
and resampled enabling the comparison of data at the pixel level [29]. Subsequently, any
physical quantities can be computed via accurate sensor calibration. In cases of spectral
and spatial similarity, multi-sensor data can be used interchangeably [1,30]. In other cases,
the multi-sensor data are compared prior to being combined [31]. However, research gaps
remain in the body of knowledge around sensor fusion.

Flood [32] compared Sentinel-2A (S2A) MSI and L8 OLI data but did not account
for mis-registration between sensors. While previous research had focused on terrestrial
areas (desert) only [33] and used simulated reflectance data [34], their models considered
only limited amounts of data from the spatio-temporal domain. These models were based
on the fusion of multi-sensor data for pre-selected dates only, thus rendering the model
inapplicable to other seasons [35]. However, Arekhi et al. did investigate sensor fusion
across seasons for both individual bands and vegetation indices and concluded that absent
systematic errors in data retrieval or random errors in atmospheric interference, L8 OLI
and S2A MSI can be used for long term monitoring [36]. Other studies into sensor fusion
did not consider more than two satellite systems of similar spectral and spatial features [37]
or focused on categorically different land cover types such as urban areas [38].

The aforementioned research gaps are perhaps most prominent in multiple sensor
fusion models that are applicable to any season or any area. Therefore, we propose a
virtual constellation model for NDVI that integrates compatible sensors and addresses
the sensor inequality issues by utilizing the coincident imagery from a selected four-year
time series. The technique uses S2A MSI and ASTER synergistically with L8 OLI. The
free access to L8, S2A, and ASTER, the similar wavelength for the bands relevant to
NDVI, and similar geographic coordinate systems [39] provide a viable opportunity to
combine these three satellite systems for more continuous monthly monitoring of CW
areas. ASTER has been used in conjunction with Landsat 5 (L5) to compare two vegetation
indices generated by these two sensors. Both NDVI and soil-adjusted vegetation index
(SAVI) showed lower spectral vegetation index measurements for ASTER compared to L5
Enhanced Thematic Mapper Plus (ETM+) for the same target, but still showed a strong
positive linear relationship [40]. Several simulation studies have also shown the potential
of combining S2A and L8 [41,42] as well as L8 and ASTER [40]. Here, we build on this
previous work to demonstrate the benefit of using of L8, ASTER and S2A synergistically
for long term continuous monthly monitoring of NDVI in coastal wetlands.

Pohl and Van Genderen [43], Zhang [44], and Zhu et al. [45] catalogued and reviewed
various approaches for satellite image fusion such as intensity-hue-saturation [46], principal
component analysis [47], wavelet decomposition [48], high-pass filter (HPF) [49], sparse
representation [50] and area-to-point regression kriging (ATPRK) methods [51]. Recently,
machine learning techniques such as deep learning [52] and random forest (RF) [53]
have gained popularity in satellite image fusion. Considering its advantages and past
performance [54], an RF algorithm is proposed here for the multi-sensor data alignment
in the virtual constellation of L8, S2A, and ASTER. Our approach for multi-sensor data
integration is to first designate the most ubiquitous sensor with the longest data record,
in this case L8, as the baseline. The second component of our approach is to investigate
baseline and peer sensors for similar spectral features and to develop candidates for multi-
sensor inequality alignment and finally fusion. Third, the hierarchical fusion workflow is
established to produce enhanced cloud-free NDVI that mimics the L8 product.

There are two sub-approaches for this task. The first is to resample and interpolate the
20 m S2A Level-1C data and the 15 m ASTER Level-1B data to the 30 m spatial resolution of
L8 Level-1B. S2A Level-1C top-of-atmosphere (TOA) reflectance is geometrically and radio-
metrically rectified with orthorectification to generate accurate geolocated products. ASTER
Level-1B data contain calibrated at-sensor radiances, which are geometrically corrected and
geolocated. The process for resampling is straightforward but effectively discards some of
the valuable 20 m information obtained by S2A and 15 m information obtained by ASTER.
Since our objective is to enrich the existing L8 with available complementary data, we
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retained all spatial and spectral characteristics of L8 and modified the other two satellites
accordingly. The fusion of L8 with S2A and ASTER data can increase the spatial coverage
of data available for continuous monthly monitoring. This is especially beneficial in CW
areas where cloud and water vapor mask a high percentage of the data [55]. The second
option was to compute NDVI from each sensor first before the co-registration and scaling.
This approach is called ‘index then blend (IB)’ [56,57]. The IB approach has been found to
be computationally more accurate because it mitigates error propagation compared to the
alternative [56].

This paper presents a virtual constellation that integrates NDVI data from three
satellite sensors that have similar spectral features: L8, S2A, and ASTER. The combined
imagery enables NDVI observations of CW at 30 m spatial resolution similar to L8 with
more available spatio-temporal coverage. The novelty in the current study lies in the use of
four years of coincident NDVI imagery to train components of the virtual constellation to
predict NDVI for any selected date irrespective of season, thus making the model robust
and adaptive to seasonal and inter-annual changes. The virtual constellation model will
serve as a unique tool for coastal managers to continuously monitor long term CW changes.

2. Materials and Methods

The virtual constellation methodology is divided into three major components: data
collection and pre-processing; model development; and model validation. The components
are illustrated and explained in detail in this section but first we begin with a description
of the research setting.

2.1. Research Setting in Apalachicola Bay

We conducted our study in the salt marshes of Apalachicola Bay, located on the Gulf of
Mexico coast in the Florida panhandle (Figure 1). The study area occupies a section of the
complete L8 Path 19/Row 39 scene, containing a total area of 1053.24 km2. The study site
in Apalachicola Bay contains a variety of CW vegetation. The relevant wetland land cover
types classified by the National Oceanographic and Atmospheric Administration (NOAA)
Coastal Change Analysis Program (C-CAP) [58] in the study area are: 54.1% palustrine
forested wetland (PFW), 7.86% palustrine emergent wetland (PEW), 11.66% palustrine
scrub and emergent wetlands (PSEW), and 6.48% estuarine emergent wetland (EEW).
Estuarine forested wetland and estuarine scrub or shrub wetland are negligible (<1%) in
the study area. 19.56% of the study area was made up of developed areas, agricultural use,
and bare land [59].

Apalachicola Bay was selected as the research setting because of its location in a
sub-tropical coastal area where clouds are frequently present throughout the year and
because of the importance of CW to the local economy [13,54,60].
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2.2. Sensor Data Collection and Pre-Processing

L8, S2A and ASTER data from the years 2015 through 2018 were collected and pro-
cessed for the current study (Figure 2). These years represent the time period (ongoing)
where data are available for all three sensors.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 1. Location map of research setting in Apalachicola Bay, FL. 

2.2. Sensor Data Collection and Pre-Processing  
L8, S2A and ASTER data from the years 2015 through 2018 were collected and pro-

cessed for the current study (Figure 2). These years represent the time period (ongoing) 
where data are available for all three sensors. 

 
Figure 2. Image pre-processing workflow. Tn represents a given satellite image acquisition date. Figure 2. Image pre-processing workflow. Tn represents a given satellite image acquisition date.

Landsat 8 (L8) data were collected from the NASA Earth Observing System (EOS) [61],
for the years 2015 through 2018. L8 was initially known as the Landsat Data Continuity
Mission and was launched on 11 February 2013. Similar to the previous generations of
Landsat, L8 has a 16 day repeat cycle. The L8 OLI sensor captures nine spectral bands,
including a panchromatic (PAN) band. The visible, near infrared (VNIR) and shortwave
infrared (SWIR) bands are produced with a 30 m spatial resolution while the PAN band is
produced at 15 m spatial resolution. The L8 swath width is 185 km. We downloaded L8
images covering the Paths 19–20, Row 39. While Path 20, Row-39 covers 100% of our study
area, Path 19, Row-39 covers almost 50% of the eastern side of the study area. The reason
for keeping two different combinations of Paths and Rows is to accumulate more dates in
the temporal domain for training the RF. A sharp edge is observed in the L8 image for the
dates where only one pass (Path 19, Row-39) covering approximately half of the study area
was available (Figure 3).
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We pre-processed the L8 data for years 2015 through 2018 using the analytics tool
provided by the EOS cloud-based platform [61]. This service removes the need for the
user to download and store the data prior to pre-processing locally, making this part of the
workflow more reproducible, efficient, and less error-prone. The L8 data were subjected to
the EOS imagery pre-processing pipeline which includes radiometric calibration of digital
numbers into at-sensor radiance, raster filters to remove noise, reprojection to a common
projection system (UTM zone 16N, WGS 1984), cloud detection and masking. NDVI was
computed using EOS with band 4 (Red) and band 5 (NIR) reflectance as input and the
resulting NDVI image output was in geotiff format [61]. EOS employs the canonical NDVI
formula [62], expressed mathematically as:

NDVI =
NIR − RED
NIR + RED

(1)

Sentinel-2A (S2A) data were also collected from EOS. S2A was launched as part of the
European Space Agency Copernicus program on 23 June 2015 [61]. S2A has 13 spectral
channels including three VNIR bands with 10 m spatial resolution, two NIR bands with
10 and 20 m spatial resolutions. S2A has the widest swath width of the three sensors in
the proposed virtual constellation at 290 km. Similar to L8, S2A data were collected and
pre-processed using EOS for the years 2015 through 2018. Band 8A (NIR) and band 4 (Red)
reflectance values were used for S2A NDVI calculation. All available S2A images from
tiles T16RFT, T16RGU, T16RGT, T16RFU, and T16RGT were used to produce NDVI images.
These 5 tiles combined to cover the full study area, but not all tiles had images available
on all desired dates. Similar to L8, a sharp edge was observed in the S2A image for those
dates where less than five of the mentioned tiles are available. Additionally, S2A data
tiles contain some overlap for images acquired on the same date. Image reprojection and
cubic convolution resampling was done using ArcGIS to calculate the pixel value in the
overlapped portion of the S2A input image [63] (Figure 3).

ASTER data were acquired through the United States Geological Survey (USGS) Earth
Explorer via the LP-DAAC site (NASA Land Processes Distributed Active Archive Center
n.d.). ASTER is a joint program between NASA and Japan’s Ministry of Economy, Trade
and Industry (METI). ASTER global observation data have been publicly available since
the year 2000. Its spectral capabilities include three VNIR bands at 15 m spatial resolution,
six SWIR bands at 30 m spatial resolution, five thermal infrared (TIR) bands at 90 m spatial
resolution and a NIR band at 15 m spatial resolution [64]. It has the narrowest swath
width of the three virtual constellation sensors at 60 km. We downloaded all available
local granules of ASTER covering the entire spatial extent of the study area. Similar to
L8 and S2A, the dates where one or more granules are missing result in a sharp edge in
the image (Figure 3). The ASTER data were pre-processed using USGS LP-DAAC Science
Processor for Missions (S4PM) [65] processing system that also stores ASTER Level 1, 2, and
3 products. The ASTER Level-1B data were used for NDVI computation. The ASTER Level-
1B data are available in the Hierarchical Data Format (HDF) and the bands required to
compute NDVI are band 3N (Red) and band 8 (NIR). The R [66] package provided by USGS
LP-DAAC was used to convert the HDF data from ASTER Level-1B (in UTM coordinates)
to a multi-band geotiff file (UTM zone 16N, WGS 1984) that was then co-registered with
the L8 and S2A imagery in ArcGIS. NDVI was computed from the pre-processed image
using the bands referenced above and Equation (1).
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The collective spatial and spectral similarities of L8, S2A, and ASTER enable their
synergistic use to map NDVI continuously as a virtual constellation. Since NDVI is
calculated using only red and NIR bands, no other bands from the respective satellite
sensors were used in this analysis. The spectral characteristics of the L8, S2A, and ASTER
standard products are listed in Table 1.
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Table 1. Parameters of bands for NDVI computation from Landsat 8, Sentinel-2A, and ASTER.

Sensor Subsystem Band Spectral Range (µm) Signal to Noise
Ratio (SNR) Spatial Resolution (m) Swath Width (km)

Landsat 8
OLI

NIR 5 0.85–0.87 204
30 185Red 4 0.63–0.68 227

Sentinel-2A
MSI

NIR 8A 0.86–0.88 72 20
290Red 4 0.65–0.68 142 10

ASTER
NIR 3N 0.78–0.86 202

15 60Red 2 0.63–0.69 306

2.3. Virtual Constellation Development

The proposed virtual constellation is a remote sensing modeling system that integrates
three satellite sensors to produce a single NDVI image each month that is free from cloud
contamination (Figure 4). The method was developed under two assumptions regarding its
primary application, long-term analysis of coastal marsh vegetation. First, we assume that
NDVI is a proxy for overall CW vegetation health [54], and a monthly NDVI time series
will follow a typical seasonal pattern except when influenced by major external forces such
as sea level rise (long-term) or hurricane storm surge (short term). Second, inequality of
NDVI between different sensors has systematic [20] and random [67] components and their
relationship can be modeled using long-term historical data [68].

The first objective of the virtual constellation development was to align the NDVI
value scales across the three sensors. Common observations from the three sensors during
the coincident time-period (i.e., same calendar month) provided the opportunity for inter-
sensor comparison. Relationships were analyzed at the pixel level between sensor pairs.
The reason for developing the relationships between two sensors at a time is that each pair
of sensors has unique inconsistencies from systematic and random error components [67].
The systematic inconsistency comes from climate conditions or geographical locations
of the satellites [69] and the random inconsistency comes from multiple sources such as
difference in overpass timing, sun angle, sensor mechanism and other sensor specific
features. The amount of inconsistency varies in each sensor combination. Traditional (LR)
would be the simplest method to establish NDVI relationships between sensors. However,
LR has previously been shown to be ineffective in capturing complex relationships when
synthesizing remote sensing imagery so the proposed virtual constellation implements an
RF similar to previous research [54]. By using four years of monthly NDVI data adjusted
to be compatible with L8 with sufficient temporal coincidence among the sensors, the RF
was developed to predict NDVI values for L8 pixels obscured by clouds and shadows.

Random Forest Model

To establish quantitative relationships between the baseline sensor (L8) and peer
sensors (S2A and ASTER) NDVI, we constructed an RF as a multivariate non-parametric re-
gression method [70,71], using the peer sensor’s NDVI values, unique common geographic
location (Northing (m) and Easting (m)) and month of the year from NDVI time series as
predictor variables and baseline sensor’s NDVI values as target variable.

The RF algorithm builds many (typically between 100 and 1000) regression trees based
on random subsamples, with replacement, from the training data set. This process is
known as bootstrap aggregation, or bagging, and is used to train the individual trees with
the results of the ensemble produced by computing the mean prediction (for regression) or
the majority vote (for classification) [71,72]. At each node in a tree, a subset of predictor
variables is selected at random and the optimal binary split is computed using the training
data subsample and a metric known as “purity.” During this procedure, all candidate
splits are evaluated to determine which one maximizes the purity of the resulting branch.
Residual sum of squares (RSS), shown in Equation (2) is used as the splitting criteria for
regression trees.
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RSS = ∑ le f t(yi − yL)
2
+ ∑ right(yi − yR)

2 (2)

where, ∑ le f t(yi − yL)
2 and ∑ right(yi − yR)

2 refer to the left and right nodes of the binary
split, respectively.

The classification and regression trees in an RF grow to their maximum purity although
they are commonly constrained by a maximum depth parameter. A key element in an RF is
that each individual tree is exposed to only a randomly selected subset of the training data
and must produce a prediction based on this limited information. Thus, it takes many trees
to assemble a functional RF which also makes it resistant to overfitting. The number of trees
is usually determined by an optimization procedure designed to calculate the minimum
number of trees (for computational speed and efficiency) to achieve a desired result. RF is
appealing in this application because of its generally accurate predictions and its calculation
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of feature importance that can act as a means for evaluating the influence of each feature on
the algorithm [72]. Furthermore, RF models provide the user with additional randomness
and computational efficiency during the bagging process. Splits within standard decision
trees are typically determined by choosing an optimal split from all predictor variables. In
contrast, an RF randomly selects a subset of the predictor variables, the number of which
can be set as a parameter by the user. Subsequently, the best possible split is determined and
used for that node. Further details regarding RF can be found in [71]. We also suggest that
readers look at the figures of [54] to see an illustration of an example ensemble containing
three trees and also a detail of one tree from the ensemble.

2.4. Application and Testing of Virtual Constellation in Apalachicola Bay
2.4.1. Selecting the Baseline Sensor

The baseline sensor is designated as the target sensor while the peer sensors provide
complementary observations to the target sensor in an effort to estimate missing data. In
this study, we used NDVI derived from three satellite systems (L8, S2A, and ASTER) for
data fusion. Overall, three primary factors were considered when selecting the baseline
sensor: Longest available historical data record; maximum overlapping with peer sensors;
and minimum percentage of monthly cloud obscured data.

Cloud cover percentage (i.e., CC) was calculated as the number of cloud obscured
pixels indicated in the imagery metadata divided by the total number of pixels in each
image. The percentage of visible pixels (100–CC) for each sensor from 2013 to 2018 is shown
in Figure 5.
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As shown in Figure 5, Landsat (including previous generations) has the longest
record dating back to August 1972. ASTER has the next longest record beginning in July
2000 and S2A has the shortest record beginning in July 2015. Figure 5 also shows that
the coincident time period for all three sensors begins in 2015, therefore the period of
analysis presented herein is from 2015 to 2018 when all three sensors were simultaneously
operational (42 months total). These three sensors have spectral and spatial similarity
which minimizes pre-processing and aids in information persistence during the analysis,
especially in the sensors chosen as peers rather than primary. Along with the longest
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period of record, L8 has the highest percentage (~80%, S2A and ASTER have ~71 and
~52%, respectively) of visible data over the coincident time period from July 2015 to 2018,
therefore it was selected as the primary sensor. Since L8 is the primary sensor, observations
from the peer sensors can be integrated into the target L8 image when necessary. In other
words, the output of virtual constellation is an L8 image where missing values due to
clouds are estimated using S2A or ASTER.

2.4.2. Input Preparation

Images in the L8 time series were clipped to study area boundary using ArcGIS,
excluding the major bays, lakes, and river channels from the analysis. In developing and
training the virtual constellation, data availability was determined at the pixel scale. At
30 m resolution, there are approximately 1.17 million pixels in the image. The L8 cloud
mask [73] distributed with each image was used to identify cloud pixels and calculate cloud
cover percentage. An additional filter for negative NDVI values was implemented since
NDVI values approaching −1 generally correspond to open water or other non-vegetated
areas [74]. Figure 6 shows the temporal distribution of usable data in the study area over
the analysis period. L8 NDVI imagery is released as a 16-day composite, therefore some
months will contain two images. Due to the fact that the month, encoded as an integer
from 1 to 12, is a predictor variable in the RF, in the event that two separate images were
available for a particular month we selected the one with a lower CC.
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S2A and ASTER NDVI (floating point values from 0.0 to 1.0), location (floating point
Northing and Easting coordinates of the pixels in meters referenced to UTM Zone 16N,
WGS84), and the image acquisition month (encoded as an integer from 1 to 12) were the
predictor variables for the virtual constellation model. Including the location as an input
feature enables the RF to estimate a value correlated with that of nearby pixels as well as a
historically plausible value [54].

The pre-processed S2A and ASTER images were clipped to study area and resampled
using a nearest neighbor assignment method to 30 m ground resolution using ArcGIS to
maintain the consistency of each pixel location throughout the time series. The SEN2COR
cloud mask [75] was used for S2A cloud identification. The negative NDVI filter mentioned
previously was also used for S2A to mask out pixels corresponding to open water. In
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the virtual constellation model organization, S2A data are selected as secondary. The
primary reason for prioritizing S2A over ASTER was that S2A was previously shown to
provide adequate continuity for current LANDSAT missions [76]. Secondly, the ASTER
NIR bandwidth is wider than the other two sensors and the difference between it and L8 is
larger than the difference between S2A and L8 (Table 1). The L8-S2A fused imagery was
then ready for tertiary fusion with ASTER if necessary. The virtual constellation model
was robust in the sense that in cases of scene unavailability or obscurity for any single
sensors, the others could be fused into viable NDVI imagery. In cases where only one
sensor was available in addition to L8 (target sensor), then the peer sensors NDVI values
were adjusted to L8 compatible NDVI and the L8 values remained unchanged. On the
other hand, if the baseline sensor L8 was not available, then S2A was fused with ASTER
where both transformed to L8 compatible values using the RF and fused into a virtual L8
image. In the event that the only available imagery is a cloudy image from one sensor, then
a technique such as Optical Cloud Pixel Recovery (OCPR) would be necessary to repair the
image [54].

2.4.3. Selection of Training Data

Machine learning models, including the virtual constellation proposed here, require
reliable and clean data for training. The accuracy of the final estimator is dependent on the
quantity and quality of the training data. All predictor variables except calendar month are
floating point values. Across 42 months with approximately 1.17 million records (pixels)
per month, the overall data corpus contained just over 49 million records.

The RF used in the virtual constellation to produce L8 compatible data from S2A and
ASTER was implemented in Python using scikit-learn [77]. The Geospatial Data Abstraction
Library (GDAL) [78] was used to determine the spatial locations associated with the data.
All records containing missing predictors (labeled as “zero” or “NaN”) were removed.
70% (~34.4 million) of the records in the data corpus were randomly selected without
replacement to form the training data set with the remaining 30% (~14.7 million) set aside
as the testing data set. Examples of labeled records used in the virtual constellation model
are shown in Table 2.

Table 2. Sample data for training virtual constellation model.

L8 NDVI Month Northing (m) Easting (m) S2A NDVI ASTER NDVI

0.53 12 692,842.0 3,295,065.0 0.49 0.37
0.50 12 692,872.0 3,295,065.0 0.53 0.40
0.41 4 668,722.0 3,298,545.0 0.42 0.26
0.34 4 668,752.0 3,298,545.0 0.69 0.21
0.14 9 653,625.0 3,299,865.0 0.15 0.20
0.12 9 653,655.0 3,299,865.0 0.11 0.29
0.11 6 704,565.0 3,306,645.0 0.18 0.24
0.13 6 704,625.0 3,306,645.0 0.63 0.23
0.65 5 660,435.0 3,306,135.0 0.71 0.69
0.64 5 660,465.0 3,306,135.0 0.69 0.65

2.4.4. Validation and Performance

The first validation layer for the virtual constellation compares its prediction accuracy
to a simple LR model. The purpose of this comparison is to demonstrate the superiority
of the RF and justify the added complexity. In order to quantitatively validate the model,
synthetic clouds were generated over areas in an image that have true NDVI values thus
providing labeled data for testing. The images chosen for the synthetic cloud validation
were purposely excluded from the training data but were within the study area. The
metrics used for validation were Root Mean Square Error (RMSE) and Coefficient of
Determination (R2).
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RMSE is defined as:

RMSE =

√√√√ 1
n

n

∑
i=1

(
Xi − X̂i

)2

(3)

where Xi and X̂i represent the observed and estimated NDVI values for pixel i, respectively,
and n is the number of pixels in the sample [79].

Coefficient of Determination (R2) is a measure of performance when comparing
estimated values to observed values, typically in a one-to-one plot. It is defined as:

R2 = 1 − SSE
SSXX

(4)

SSE = ∑
(
Xi − X̂i

)2 (5)

SSXX = ∑
(
Xi − Xi

)2 (6)

where Xi is the observed NDVI, Xi is the mean of the observed NDVI values, and X̂i is the
estimated NDVI. R2 measures the linear agreement between predictions and observations
or the degree to which the predicted values capture the observed values over simply using
the mean as the prediction. However, it is sensitive to outliers and should only be used
when the data are normally distributed.

As summarized above, synthetic clouds were created over pixels that had true L8
NDVI values. First, we compared the RF and LR virtual constellation models over the
synthetic cloud pixels. Sample data from each season (3 month intervals) were used for
performance assessment and validation. We also tested the virtual constellation model for
sensitivity to the month and cloud cover percentage of the target image. The purpose of
this analysis was to deepen our understanding about the performance of the model with
respect to seasonality, check for issues related to Simpson’s paradox [54], and investigate
the model’s sensitivity to the initial percentage of image obscured by clouds. Synthetic
clouds were created by obscuring increasing percentages of the images to investigate the
influence, if any, of cloud coverage in the target image on the end result and determine the
working limitations of the model in this respect.

3. Results
3.1. Sensor NDVI Value Agreement

To investigate the degree of sensor agreement when producing NDVI for the same
pixel at the same time, we developed one-to-one scatterplots of observed L8 versus ob-
served S2A and observed ASTER individually, along with their counterpart plots of ob-
served L8 versus adjusted S2A and adjusted ASTER (Figure 7). The NDVI images used
to generate Figure 7 were acquired in May 2018. Figure 7A,C shows scale inconsisten-
cies between L8 and observed S2A and observed ASTER, respectively, demonstrated by
the different data ranges for each sensor. Figure 7A,C also shows a positive yet signifi-
cantly scattered relationship between observed L8 and observed S2A and observed ASTER.
Figure 7B,D show improved (less scattered) relationships after S2A and ASTER have been
adjusted by the RF to estimate L8. A lower NDVI saturation point, at around 0.1, is evident
for both S2A and ASTER compared to 0.2 for L8. On the higher end, L8 and S2A appear
to saturate at approximately 0.8 and ASTER at approximately 0.6. There was less data
dispersion around the trendline through the adjusted data shown in Figure 7B,D for both
S2A and ASTER (R2 = 0.81 and 0.77, respectively), when compared to the observed NDVI
for S2A and ASTER (R2 = 0.52 and 0.56, respectively) shown in Figure 7A,C. Note that
the R2 values shown in Figure 7 were calculated from the 1000 point sub-sample used to
generate that plot, however the trends are consistent with the results from the entire data
set stated previously.
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3.2. Data Fusion and Reconstruction

After implementing the virtual constellation model, the spatial coverage of L8 NDVI
over the study area showed improvement. In February 2018 (Figure 8), L8 had visible
coverage of only 48.1% of the study area. The coverage percentages improved to 100% after
fusion with S2A. ASTER did not contribute to this fusion due to complete cloud coverage
in its February 2018 image. In September 2016, both S2A and ASTER contributed to the
increased spatial coverage of fused L8 NDVI. Before implementing the virtual constellation
model, L8 had a visible coverage of only 9.89%. The visible coverage percentage improved
to 33.75% after fusion with S2A and then to 70.86% after fusion with ASTER. Recall that
the sharp image boundaries in Figure 8 represent the absence of an adjacent scene for that
month. Additionally, it is important to note that the S2A and ASTER imagery shown in
Figure 8 are in their raw NDVI state, prior to the RF adjustment to be L8 compatible.
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3.3. Analysis of Virtual Constellation Model Performance

A large portion of L8 NDVI data in coastal areas is often missing due to heavy cloud
cover (see Figure 3). Therefore, to aid in long-term continuous monthly monitoring of CW
vegetation dynamics, a virtual constellation model was developed and applied to improve
NDVI coverage.

In order to justify the use of a machine learning approach, the virtual constellation
model using a RF to synthesize the NDVI data from the three satellite sensors was compared
with one based on a simple LR [54]. The test data were NDVI values for pixels randomly
selected without replacement (n = 830,772 total). For clarity, Figure 9 only shows the
virtual constellation NDVI versus observed L8 NDVI for the test data from four months
representing the four seasons (March, June, September, December), however the R2 and
RMSE are calculated on the entire test set. Figure 9 (left) shows the predictions of RF
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virtual constellation while Figure 9 (right) shows the predictions of the LR based virtual
constellation. The RF has a more consistent linear trend across the plotted seasons and
tighter agreement than LR. The RF has an R2 value of 0.88 and a positive linear trend while
the virtual constellation-LR has a weaker R2 value of 0.26 and is more scattered around its
linear trendline, with some visible disjoints between seasons. On the test sample, the RF
has a RMSE of 0.0020 while LR has a RMSE of 0.1207. The R2 and RMSE values suggest
that the RF not only outperformed LR, but was also able to accurately estimate the absolute
magnitude of NDVI. The data shown in Figure 9 are also color coded by month to represent
seasonal variations and to investigate the possibility of the model performing well as
a whole while simultaneously performing poorly in any individual month (Simpson’s
Paradox). The four months shown in Figure 9 represent the seasonality of vegetation
growth in this region. The colors are well distributed in the RF scatter plot indicating that
the virtual constellation model is performing well in all individual months in addition to
the entire time period.
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3.4. Sensitivity of Virtual Constellation Performance to Initial L8 Cloud Cover

The virtual constellation model was trained and tested using a data corpus where each
record corresponds to a labeled (NDVI) pixel with the predictor features explained above.
The source images were compiled from L8, S2A, and ASTER imagery from the 2015 to 2018
time period. Since each pixel is used as a training record, rather than a vector representing
the entire image (common practice in deep convolutional neural networks, for example),
the virtual constellation avoids overfitting to any particular prediction feature, including
month. However, in order to determine the effective limit on initial cloud cover in the target
L8 image that can be reconstructed using the virtual constellation, we tested the method’s
sensitivity to percent cloud cover by artificially obscuring increasing percentages of pixels
from the target L8 image and executing the virtual constellation process. Table 3 shows the
performance of the virtual constellation under different percentages of synthetic data loss.
January 2016 was selected for the sensitivity analysis because it had 100% visibility and
was therefore a good candidate for validation using synthetic data loss due to clouds.
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Table 3. Sensitivity of virtual constellation performance to cloud cover in base image for January 2016.

Synthetic Cloud Cover R2 RMSE p-Value

10% 0.8129 0.009648 <0.05
20% 0.8146 0.009669 <0.05
30% 0.8127 0.009490 <0.05
40% 0.8356 0.009557 <0.05
50% 0.8246 0.009474 <0.05
60% 0.8179 0.009457 <0.05
70% 0.8113 0.009548 <0.05
80% 0.8403 0.009457 <0.05
90% 0.8155 0.009546 <0.05

100% 0.8193 0.009581 <0.05

Based on the analysis of the January 2016 image, the performance of the trained virtual
constellation in reconstructing NDVI data in an L8 image was resilient to the initial cloud
cover of the base L8 image. The R2 and RMSE values for predictions across the entire
range of artificial cloud cover percentages were all greater than 0.81 and 0.0094. Thus, the
results indicate that virtual constellation performs almost equally well regardless of season
(Figure 9) or severity of cloud coverage in the target L8 image (Table 3).

4. Discussion

Sensor fusion can provide opportunities for capturing long-term monthly CW vegeta-
tion dynamics by creating spatially and temporally near-seamless observation records. The
major hindrance to multi-sensor fusion is inconsistency between coincident images from
each sensor and it is important to consider sensors that are compatible in terms of spectral
and spatial characteristics. L8 and S2A have demonstrated potential for synergistic use
that can capture the monthly dynamics of coastal areas. L8 and S2A data represent the
most widely accessible moderate resolution multispectral satellite measurements. ASTER
is another moderate resolution sensor that has similar spatial and spectral characteristics
and was successfully used synergistically with previous generations of Landsat [80]. While
multi-sensor NDVI data provide different views of earth surface, it is important to account
for the sensor differences and ensure that the final products are aligned across all relevant
dimensions prior to fusion. Otherwise, the uncorrected NDVI variances will introduce
spurious noise into the fusion results [20].

The virtual constellation model presented here explicitly addresses this issue by
adjusting each complementary sensor separately and fusing them hierarchically (S2A
followed by ASTER). The current study provides a quantitative assessment of how the
use of a virtual constellation, rather than relying on a single sensor, can advance the
science of developing long-term, accurate, and seamless NDVI. It uses the properties of
RF to model the relationship between a labeled outcome (NDVI) and the features used
to predict it. Inclusion of coordinate location into the predictor set enables the model to
estimate an appropriate value considering its neighboring pixels as well as a historically
reasonable value for that location. Although, this renders the model specific to locations
within the spatial reference system and units used here (UTM Zone 16 North, WGS 1984).
Additionally, the inclusion of month only (encoded as an integer from 1 to 12) instead of
both month and year enhances the model’s robustness to seasonality without overfitting
to annual scale non-stationarity. Another reason for the selection of RF as the prediction
interface between L8 and its supplemental sensors S2A and ASTER is its ability to estimate
prediction error and feature importance simultaneously with model training and testing.
This information can effectively guide researchers toward feature inclusion or exclusion as
well as tuning the hyperparameters of the RF (number of features to split on and maximum
depth). Table 4 shows the feature importance which is indicative of how useful each
feature is in the construction of each RF decision trees used in virtual constellation for this
study [81].
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Table 4. Feature importance for the trained random forests.

ASTER to L8 NDVI S2A NDVI to L8

Features Importance Features Importance

ASTER NDVI 0.586 S2A NDVI 0.479
Northing (m) 0.222 Northing (m) 0.275
Easting (m) 0.185 Easting (m) 0.227

Month 0.014 Month 0.024

As shown in Table 4, the complementary sensor NDVI is the most important feature
followed by position (Northing, Easting). The month contributes much less to the esti-
mation, accounting for only 1.4 and 2.4% of the feature importance in the ASTER and
S2A models, respectively. It is likely that the month adds a final layer of spatio-historical
memory to the overall prediction, but perhaps it is replicating information already known
to the model as a result of the complementary sensor NDVI. This is a potential topic for
future work in enhancing virtual constellations.

The results also showed that using LR was insufficient to predict L8 NDVI for either
complementary sensor. In terms of the wall clock time required to train the models, LR is
significantly faster than RF. However, RF showed better prediction accuracy than LR in this
application and its complexity is justified. The virtual constellation technique presented
here was limited by the availability of historical data in which all three sensors were active.
In particular, the peer sensor data (S2A and ASTER) are currently not available over the
same long time period as the baseline Landsat 8 NDVI. Similar to many machine learning
approaches, its performance is tightly coupled to the quality and quantity of its training
data. It is not known, however, whether or not RF is the best machine learning model
for this task. Based on the literature, it is a justifiable choice but perhaps as more data
are collected, an alternative model such as convolutional neural networks may be a better
choice. The authors also strongly recommend that the area of interest lie well inside the
analysis boundary used to clip the satellite imagery to avoid interpolation effects near
the edges. This is especially relevant to the technique presented here as the location was
second only to peer sensor values in its influence on the final NDVI prediction.

The results presented herein also show that while the virtual constellation improves
spatial coverage of obscured L8 NDVI imagery, there are still cases where it cannot recon-
struct the image due to lack of complementary sensor data from S2A or ASTER over all
or parts of the target image. One specific instance where this occurred was in October
2018. Figure 5 shows that no ASTER or S2A imagery was available for this month, and
Figure 6 shows that only 45.75% of the L8 image was visible. Hurricane Michael made
landfall on 10 October 2018 near the study region which likely caused the vast cloud cover
rendering these images unusable. In these cases, a tool such as OCPR [54] that relies on
deeper environmental data and no other sensors can be used. However, this also illustrates
the potential for fusing images that occur in the same calendar month, but were acquired
before and after a major event such as a hurricane. Future researchers should exercise cau-
tion and perhaps manually review imagery in months where catastrophic events affecting
NDVI occurred.

There is also a possible issue when NDVI values from a complementary sensor are
faulty and there are no accurate values in the other complementary or target sensors to
prevent the faulty data from propagating into the output image. This issue is mitigated by
quality control procedures implemented prior to the public release of the imagery. This
is also mitigated to some degree by including the encoded location and month in the
predictor feature set as NDVI values that are uncharacteristic for a specific location and
time of year would likely be adjusted to more plausible values by the random forest.

Still, the virtual constellation model is a positive step towards producing spatially
and temporally seamless NDVI for long-term CW studies. One crucial application where
virtual constellation could be of use is the projection of CW coverage, zonation, and above
ground biomass density under sea level rise scenarios [82–85]. A critical component of
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these studies is the ability to capture the present and past states of CW for validation
purposes. Present and past states serve as the basis for future projections and these types
of models are highly sensitive to initial conditions. A virtual constellation can be used to
establish such initial states by capturing the spatial variability of CW vegetation health
over time. It can also be used to validate a CW vegetation model’s projection as data
are collected and produced in the future. However, additional work may be needed in
the application of the negative NDVI filter used to exclude open water pixels in order to
properly capture the permanent conversion of CW fringes to open water. At the monthly
time scale, it is likely that all three sensors identify a similar set of open water pixels (since
the negative NDVI filter is applied to each sensor’s image separately).

5. Conclusions

This study developed a machine learning technique for synergistic use of three optical
satellite sensors to increase spatio-temporal coverage of NDVI imagery with cloud contam-
inated pixels in coastal wetlands. A virtual constellation using the random forest algorithm
blended Landsat 8 OLI, Sentinel-2A MSI, and ASTER to produce enhanced NDVI imagery
over the study area in Apalachicola, FL (USA) with improved spatial coverage. The en-
hanced NDVI imagery product was designed to correspond with the spatial and spectral
properties of Landsat 8 NDVI. The salient benefit of using compatible sensor data is the
retention of spatial patterns in the newly reconstructed NDVI imagery which is important
for long-term evolution and change detection in monthly coastal wetland modeling.

While we see no major barriers to scaling this technique for operational use as all the
included sensors develop to maturity and others are brought online, some future work
including further tuning the random forest hyper parameters, accounting for catastrophic
events that substantially alter the NDVI between complementary sensor acquisitions in
the same calendar month, and addressing open water pixels in tidally influenced systems
would be beneficial.

The idea of spatial information recovery using machine learning and multi-sensor
fusion has been demonstrated to be a viable approach to mitigate cloud, shadow and other
anomalous contamination with enough accuracy to support long-term coastal wetland
studies. These applications would be strengthened by a deeper collaboration between the
engineering and application communities. Stated another way, end-users would benefit
from not only the new observation capabilities of proposed sensors, but also the redundancy
and continuity they could provide to existing higher level data products.
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